Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Biomol Struct Dyn ; 39(14): 5033-5047, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574027

ABSTRACT

COVID-19 has ravaged the world and is the greatest of pandemics in human history, in the absence of treatment or vaccine the mortality and morbidity rates are very high. The present investigation was undertaken to screen and identify the potent leads from the Indian Ayurvedic herb, Asparagus racemosus (Willd.) against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. Asparoside-C, Asparoside-D and Asparoside -F were found to be most effective against both the proteins as confirmed through their docking score and affinity. Further, the 100 ns molecular dynamics study also confirmed the potential of these compounds from reasonably lower root mean square deviations and better stabilization of Asparoside-C and Asparoside-F in spike receptor-binding domain and NSP15 Endoribonuclease respectively. MM-GBSA based binding free energy calculations also suggest the most favourable binding affinities of Asparoside-C and Asparoside-F with binding energies of -62.61 and -55.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. HighlightsAsparagus racemosus have antiviral potentialPhytochemicals of Shatavari showed promising in-silico docking and MD resultsAsparaoside-C and Asparoside-F has good binding with target proteinsAsparagus racemosus holds promise as SARS-COV-2 (S) and (N) proteins inhibitor Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2
2.
J Biomol Struct Dyn ; 39(12): 4510-4521, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317843

ABSTRACT

COVID-19 has ravaged the world and is the greatest of pandemics in modern human history, in the absence of treatment or vaccine, the mortality and morbidity rates are very high. The present investigation identifies potential leads from the plant Withania somnifera (Indian ginseng), a well-known antiviral, immunomodulatory, anti-inflammatory and a potent antioxidant plant, using molecular docking and dynamics studies. Two different protein targets of SARS-CoV-2 namely NSP15 endoribonuclease and receptor binding domain of prefusion spike protein from SARS-CoV-2 were targeted. Molecular docking studies suggested Withanoside X and Quercetin glucoside from W. somnifera have favorable interactions at the binding site of selected proteins, that is, 6W01 and 6M0J. The top-ranked phytochemicals from docking studies, subjected to 100 ns molecular dynamics (MD) suggested Withanoside X with the highest binding free energy (ΔGbind = -89.42 kcal/mol) as the most promising inhibitor. During MD studies, the molecule optimizes its conformation for better fitting with the receptor active site justifying the high binding affinity. Based on proven therapeutic, that is, immunomodulatory, antioxidant and anti-inflammatory roles and plausible potential against n-CoV-2 proteins, Indian ginseng could be one of the alternatives as an antiviral agent in the treatment of COVID 19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Panax , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
3.
Phytomed Plus ; 1(3): 100095, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1309364

ABSTRACT

Background: Since December 2019, SARS-CoV-2 had been a significant threat globally, which has accounted for about two million deaths. Several types of research are undergoing and have reported the significant role of repurposing existing drugs and natural lead in the treatment of COVID-19. The plant Phyllanthus emblica (Synonym-Emblica officinalis) (Euphorbiaceae) is a rich source of vitamin C, and its use as an antiviral agent has been well established. Purpose: The present study was undertaken to investigate the potency of the several components of Phyllanthus emblica against three protein targets of 2019-nCoV viz. NSP15 endoribonuclease, main protease, and receptor binding domain of prefusion spike protein using molecular docking and dynamics studies. Methods: The docking simulation studies were carried out using Schrödinger maestro 2018-1 MM share version, while dynamics studies were conducted to understand the binding mechanism and the complexes' stability studies. Results: Out of sixty-six tested compounds, Chlorogenic acid, Quercitrin, and Myricetin were most effective in showing the highest binding energy against selected protein targets of SARS-CoV-2. The network pharmacology analysis study confirmed these compounds' role in modulating the immune response, inflammatory cascade, and cytokine storm through different signaling pathways. Conclusion: Current pharmacoinformatic approach shows possible role of Phyllanthus emblica in the treatment and management of COVID-19.

4.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1046729

ABSTRACT

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Subject(s)
COVID-19 Drug Treatment , Molecular Docking Simulation , Molecular Dynamics Simulation , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Humans , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Protein Domains , Saponins/metabolism , Saponins/therapeutic use
5.
Comb Chem High Throughput Screen ; 24(4): 591-597, 2021.
Article in English | MEDLINE | ID: covidwho-721424

ABSTRACT

AIM AND OBJECTIVE: At present, the world is facing a global pandemic threat of SARSCoV- 2 or COVID-19 and to date, there are no clinically approved vaccines or antiviral drugs available for the treatment of coronavirus infections. Studies conducted in China recommended the use of liquorice (Glycyrrhiza species), an integral medicinal herb of traditional Chinese medicine, in the deactivation of COVID-19. Therefore, the present investigation was undertaken to identify the leads from the liquorice plant against COVID-19 using molecular docking simulation studies. MATERIALS AND METHODS: A set of reported bioactive compounds of liquorice were investigated for COVID-19 main protease (Mpro) inhibitory potential. The study was conducted on Autodock vina software using COVID-19 Mpro as a target protein having PDB ID: 6LU7. RESULTS: Out of the total 20 docked compounds, only six compounds showed the best affinity towards the protein target, which included glycyrrhizic acid, isoliquiritin apioside, glyasperin A, liquiritin, 1-methoxyphaseollidin and hedysarimcoumestan B. From the overall observation, glycyrrhizic acid followed by isoliquiritin apioside demonstrated the best affinity towards Mpro representing the binding energy of -8.6 and -7.9 Kcal/mol, respectively. Nevertheless, the other four compounds were also quite comparable with the later one. CONCLUSION: From the present investigation, we conclude that the compounds having oxane ring and chromenone ring substituted with hydroxyl 3-methylbut-2-enyl group could be the best alternative for the development of new leads from liquorice plant against COVID-19.


Subject(s)
Coronavirus 3C Proteases/drug effects , Glycyrrhiza/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/isolation & purification , Protease Inhibitors/therapeutic use , SARS-CoV-2/metabolism
6.
J Biomol Struct Dyn ; 39(13): 4686-4700, 2021 08.
Article in English | MEDLINE | ID: covidwho-603682

ABSTRACT

At present, the world is facing a pandemic named as COVID-19, caused by SARS-CoV-2. Traditional Chinese medicine has recommended the use of liquorice (Glycyrrhiza species) in the treatment of infections caused by SARS-CoV-2. Therefore, the present investigation was carried out to identify the active molecule from the liquorice against different protein targets of COVID-19 using an in-silico approach. The molecular docking simulation study of 20 compounds along with two standard antiviral drugs (Lopinavir and Rivabirin) was carried out with the help of Autodock vina software using two protein targets from COVID-19 i.e. spike glycoprotein (PDB ID: 6VSB) and Non-structural Protein-15 (Nsp15) endoribonuclease (PDB ID: 6W01). From the observed binding energy and the binding interactions, glyasperin A showed high affinity towards Nsp15 endoribonuclease with uridine specificity, while glycyrrhizic acid was found to be best suited for the binding pocket of spike glycoprotein and also prohibited the entry of the virus into the host cell. Further, the dynamic behavior of the best-docked molecules inside the spike glycoprotein and Nsp15 endoribonuclease were explored through all-atoms molecular dynamics (MD) simulation study. Several parameters from the MD simulation have substantiated the stability of protein-ligand stability. The binding free energy of both glyasperin A and glycyrrhizic acid was calculated from the entire MD simulation trajectory through the MM-PBSA approach and found to high binding affinity towards the respective protein receptor cavity. Thus, glyasperin A and glycyrrhizic acid could be considered as the best molecule from liquorice, which could find useful against COVID-19. Communicated by Ramaswamy H. Sarma.


Subject(s)
Glycyrrhiza , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , COVID-19 , Glycoproteins , Glycyrrhiza/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
7.
J Biomol Struct Dyn ; 39(9): 3244-3255, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-141733

ABSTRACT

The Public Health Emergency of International Concern declared the widespread outbreak of SARS-CoV-2 as a global pandemic emergency, which has resulted in 1,773,086 confirmed cases including 111,652 human deaths, as on 13 April 2020, as reported to World Health Organization. As of now, there are no vaccines or antiviral drugs declared to be officially useful against the infection. Saikosaponin is a group of oleanane derivatives reported in Chinese medicinal plants and are described for their anti-viral, anti-tumor, anti-inflammatory, anticonvulsant, antinephritis and hepatoprotective activities. They have also been known to have anti-coronaviral property by interfering the early stage of viral replication including absorption and penetration of the virus. Thus, the present study was undertaken to screen and evaluate the potency of different Saikosaponins against different sets of SARS-CoV-2 binding protein via computational molecular docking simulations. Docking was carried out on a Glide module of Schrodinger Maestro 2018-1 MM Share Version on NSP15 (PDB ID: 6W01) and Prefusion 2019-nCoV spike glycoprotein (PDB ID: 6VSB) from SARS-CoV-2. From the binding energy and interaction studies, the Saikosaponins U and V showed the best affinity towards both the proteins suggesting them to be future research molecule as they mark the desire interaction with NSP15, which is responsible for replication of RNA and also with 2019-nCoV spike glycoprotein which manage the connection with ACE2. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycoproteins , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Oleanolic Acid/analogs & derivatives , Saponins , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL